Bibliography
-
[1]
H. D. Bale and P. W. Schmidt (1984)
Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties.
Phys. Rev. Lett. 53, pp. 596.
Cited by: §3.5.7.
-
[2]
H. Baumhauer (1912)
Z.Krist. 50, pp. 33.
Cited by: §5.1.2.
-
[3]
E. F. Bertaut (1950)
Raies de Debye-Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines.
Acta Cryst. 3, pp. 14.
Cited by: §3.5.
-
[4]
I. N. Bronsztejn and K. A. Siemiendiajew (1997)
Matematyka - Poradnik encyklopedyczny.
PWN, Warszawa.
Cited by: §4.1.3.2.
-
[5]
T. L. Daulton, R. S. Lewis, and S. Amari (1998)
Polytype Variations in Presolar SiC Grains: Microstructural Characterization by Transmission Electron Microscopy.
Meteoritics & Planetary Science 33, pp. 4.
Note: Supplement, A37-A38
Cited by: §5.1.1.1.
-
[6]
P. Debye (1915)
Zerstreuung von Röntgenstrahlen.
Ann.Phys. 46, pp. 809.
Cited by: §3.2,
§3.3,
§3.5,
§4.2.
-
[7]
J. Enderlein (1997)
A package for displaying crystal morphology..
The Matematica Journal 7, pp. 72.
Cited by: Figure 3.10.
-
[8]
S. Gierlotka, B. F. Pałosz, R. Pielaszek, S. Stel’makh, and S. Doyle (1998)
Simultaneous analysis of the small- and wide-angle scattering from nanometric SiC based on the ab initio pattern simulation.
Materials Science Forum 278-281, pp. 106–109.
Cited by: §5.4.3.2.
-
[9]
S. Gierlotka, R. Pielaszek, B. F. Pałosz, E. Grzanka, H. Ehrenberg, and M. Knapp (2000)
Thermal expansion of diamond-SiC nanocomposites.
HASYLAB Annual Reports 2000.
Cited by: §5.4.3.2.
-
[10]
J. Gronkowski (1995/96)
Elementy teorii dynamicznej dyfrakcji promieni X.
Warszawa.
Note: Materiały dla studentów (skrypt)
Cited by: Chapter 3.
-
[11]
E. Grzanka, B. F. Pałosz, S. Gierlotka, R. Pielaszek, K. Akimow, U. Bismayer, and J. F. Janik (2000)
Dislocation induced polytype transformation of GaN nanocrystals under extreme pressures.
HASYLAB Annual Reports 2000.
Cited by: §5.5.1.
-
[12]
E. Grzanka, B. F. Pałosz, S. Gierlotka, R. Pielaszek, K. Akimow, U. Bismayer, and J. F. Janik (2000)
Distribution of strain in GaN and SiC nanocrystals under extreme pressures.
HASYLAB Annual Reports 2000.
Cited by: §5.5.1.
-
[13]
A. Guinier and G. Fournet (1955)
Small-Angle Scattering of X-Rays.
John Wiley & Sons, New York.
Cited by: §3.5,
§5.4.1.1.
-
[14]
A. I. Gusev (1998)
Effects of the nanocrystalline state in solids.
Physics-Uspekhi 41, pp. 49–76.
Cited by: §5.1.3.1.
-
[15]
H. Jagodzinski (1949)
Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Roentgenintensitaeten.
Acta Cryst. 2, pp. 201.
Cited by: §5.1.2.1.
-
[16]
H. Jagodzinski (1949)
Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. II. Berechnung der fehlgeordneten dichtesten Kugelpackungen mit Wechselwirkungen der Reichweite 3.
Acta Cryst. 2, pp. 208.
Cited by: §5.1.2.1.
-
[17]
H. Jagodzinski (1949)
Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. III. Vergleich der Berechnungen mit experimentellen Ergebnissen.
Acta Cryst. 2, pp. 298.
Cited by: §5.1.2.1.
-
[18]
J. F. Janik and J. R. Wells (1996)
Gallium imide, (ga(nh)), a new polymeric precursor for gallium nitride powders.
Chem. Mater. 8, pp. 2708–2711.
Cited by: §5.1.1.3,
§5.5.2.
-
[19]
J. A. Jegier, S. McKernam, A. P. Purdy, and W. L. Gladfelter (2000)
Ammonothermal Conversion of Cyclotrigallazane to GaN: Synthesis of Nanocrystalline and Cubic GaN from .
Chem.Mater. 12, pp. 1003–1010.
Cited by: §5.1.1.3.
-
[20]
D. G. Keil, H. F. Calcote, and R. J. Gill (1996)
Flame synthesis of high purity, nanosized crystalline silicon carbide powder.
In MRS Symp.Proc,
Vol. 410, pp. 167–172.
Cited by: §5.1.1.1,
2nd item.
-
[21]
J. F. Kelly, P. Barnes, and G. R. Fisher (1995)
The use of synchrotron edge topography to study polytype nearest neighbour relationships in SiC.
Radiat. Phys. Chem. 45, pp. 509–522.
Cited by: §5.1.2.2.
-
[22]
C. Kittel (1970)
Wstęp do fizyki ciała stałego.
wydanie drugie edition, PWN, Warszawa.
Cited by: §5.5.3,
§5.5.3.
-
[23]
H. P. Klug and L. E. Alexander (1954)
X-Ray Diffraction Procedures.
John Wiley & Sons, New York.
Cited by: §3.5.9.1,
§3.5.9.2,
§3.5.9.2,
§4.2.
-
[24]
C. E. Krill and R. Birringer (1998)
Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis.
Philosophical Magazine A 77 (3), pp. 621–640.
Cited by: §3.5.9.2.
-
[25]
D. Kurtenbach, H. -. P. Martin, and E. Müller (1997)
Zeitschrift für Kristallographie 12, pp. 47.
Note: Suppl.
Cited by: §5.1.1.1,
1st item.
-
[26]
J. I. Langford and D. Louër (1982)
Diffraction Line Profiles and Scherrer Constants for Materials with Cylindrical Crystallites.
Journal of Applied Crystallography 15, pp. 20–26.
Cited by: §3.5.
-
[27]
J. I. Langford (2000)
Crystallite Size from Diffraction Data.
International Union of Crystallography Newsletter 24, pp. 11–14.
Cited by: §3.5.9.2.
-
[28]
M. Lefeld-Sosnowska (1987)
Zjawiska interferencji rentgenowskich pól falowych w doskonałych i zdeformowanych monokryształach krzemu.
Wydawnictwa Uniwersytetu Warszawskiego, Warszawa.
Cited by: Chapter 3.
-
[29]
E. Limpert, W. A. Stahel, and M. Abbt (2001)
Log-normal Distributions across the Science: Keys and Clues.
Bioscience 5 (51), pp. 341–352.
Cited by: §4.1.4.
-
[30]
R. E. Maeder (Fall 1993)
Uniform polyhedra.
The Matematica Journal 3, pp. Issue 4.
Cited by: Figure 3.10.
-
[31]
E. W. Montroll and M. F. Shlesinger (1984)
Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics.
SSM, Vol. XI, North Holland, Amsterdam.
Cited by: footnote 3.
-
[32]
R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin (2001)
Matching 3D Models with Shape Distributions.
In ShapeModeling International 2001,
External Links: Link
Cited by: Figure 4.4,
§4.1.3.2,
§4.1.3.
-
[33]
B. Palosz, E. Grzanka, S. Gierlotka, S. Stel’makh, R. Pielaszek, U. Bismayer, J. Neuefeind, H.-P. Weber, Th. Proffen, R. V. Dreele, and W. Palosz (2002)
Analysis of short and long range atomic order in nanocrystalline diamonds with application of powder diffractometry.
Zeitschrift für Kristallographie 217, pp. 1–12.
Cited by: §4.1.1.2.
-
[34]
B. F. Pałosz, E. A. Ekimov, S. Gierlotka, S. Stel’makh, R. Pielaszek, A. Witek, E. Grzanka, A. Presz, H. Boysen, and U. Bismayer (1998)
Preparation of SiC-diamond composites.
HASYLAB Annual Reports I, pp. 587.
Cited by: §5.4.3.2.
-
[35]
B. F. Pałosz, S. Gierlotka, R. Pielaszek, E. Grzanka, P. Biczyk, A. Grzegorczyk, E. A. Ekimov, and U. Bismayer (2000)
Nanokompozyty diamentu i SiC z Al otrzymane metodą strefowego nasycania nanokryształów fazą ciekłą pod wysokim ciśnieniem.
Działalność Naukowa PAN 9, pp. 88.
Cited by: §5.4.3.2.
-
[36]
B. F. Pałosz, S. Gierlotka, S. Stel’makh, A. Witek, R. Pielaszek, E. Grzanka, E. A. Ekimov, A. Gavriluk, U. Bismayer, and S. Werner (1999)
In-situ diffraction studies of nanocrystalline materials under high pressures.
In Proceedings of 5th National Symposium of Synchrotron Radiation Users, Warsaw,
pp. 125–147.
Cited by: §5.4.3.2.
-
[37]
B. F. Pałosz, S. Stel’makh, S. Gierlotka, M. Aloszyna, R. Pielaszek, P. Zinn, T. Peun, U. Bismayer, and D. G. Keil (1998)
Evolution of disordering in SiC under high pressure high temperature conditions: in-situ powder diffraction study.
Materials Science Forum 278-281, pp. 612–617.
Cited by: §5.5.1.
-
[38]
B. F. Pałosz, S. Stel’makh, S. Gierlotka, E. A. Ekimov, R. Pielaszek, V. Filonenko, V. Gryaznov, and A. Gavriluk (1998)
Sintering of compacts from nanocrystalline diamonds without sintering agent.
Material Research Society Symp. Proceedings 499, pp. 115–120.
Cited by: §5.4.3.2.
-
[39]
R. Pielaszek, M. Aloszyna, B. F. Pałosz, S. Gierlotka, and S. Stel’makh (1998)
Modelling of strain distribution in non-hydrostatically pressed nanocrystalline SiC, in-situ diffraction study.
Material Research Society Symp. Proceedings 501, pp. 305–310.
Cited by: §5.5.1.
-
[40]
R. Pielaszek, M. Avdeev, E. Grzanka, B. F. Pałosz, S. Gierlotka, and S. Stel’makh (1999)
Change of microstructure of nanocrystalline SiC and diamond powders in high-pressure high-temperature conditions.
Budapest Neutron Research Center KFKI Annual Reports 1999.
Cited by: §5.4.3.2.
-
[41]
R. Pielaszek, S. Gierlotka, E. Grzanka, S. Stel’makh, and B. F. Pałosz (2002)
Influence of High Pressure on the Polytype Structure of Nanocrystalline GaN.
Diffusion and Defect Forum 208-209, pp. 189–196.
Cited by: §5.5.1.
-
[42]
R. Pielaszek, S. Gierlotka, E. Grzanka, S. Stel’makh, and B. F. Pałosz (2002)
X-ray characterization of nanostructured materials.
Diffusion and Defect Forum 208-209, pp. 267–282.
Cited by: §5.2.
-
[43]
R. Pielaszek, B. F. Pałosz, S. Gierlotka, S. Stel’makh, and U. Bismayer (1999)
A model of strain distribution in nanocrystalline SiC and diamond at very high pressures, in-situ x-ray diffraction study and computer modeling.
Material Research Society Symp. Proceedings 538, pp. 561–566.
Cited by: §5.5.1.
-
[44]
R. Pielaszek, B. F. Pałosz, S. Gierlotka, S. Stel’makh, E. Grzanka, and G. Goerigk (1999)
Change of microstructure of nanocrystalline SiC powder in high-pressure.
HASYLAB Annual Reports 1999.
Cited by: §5.4.3.2.
-
[45]
R. Pielaszek, S. Stel’makh, S. Gierlotka, B. F. Pałosz, D. Kurtenbach, and U. Bismayer (1999)
Evolution of microstructure of nanocrystalline SiC under high pressure.
Materials Science Forum 321-324, pp. 346–351.
Cited by: §5.4.3.2.
-
[46]
A. P. Purdy (1999)
Ammonothermal Synthesis of Cubic Gallium Nitride.
Chem.Mater. 11, pp. 1648–1651.
Cited by: §5.1.1.3.
-
[47]
D. Rutkowska, M. Piliński, and L. Rutkowski (1997)
Sieci neuronowe, algorytmy genetyczne i systemy rozmyte.
PWN, Warszawa-ŁódĽ.
Cited by: §5.2.1.1.
-
[48]
D. W. Schaefer and K. D. Keefer (1986)
Structure of Random Porous Materials: Silica Aerogel.
Phys. Rev. Lett. 56, pp. 2199–2202.
Cited by: item 3.
-
[49]
P. T. B. Shaffer (1969)
A Review of the Structure of Silicone Carbide.
Acta Cryst. B 25, pp. 477.
Cited by: §5.1.1.1.
-
[50]
S. Stelmakh (1997)
Diffraction Studies and Modelling of Polytype Phase Transformation in Polycrystalline Silicon Carbide.
Ph.D. Thesis, University of Warsaw, Department of Physics.
Cited by: Figure 5.1,
§5.2.3,
§5.2.
-
[51]
A. R. Stokes and A. J. C. Wilson (1942)
A method of calculating the integral breadths of Debye-Scherrer lines.
Proceedings of the Cambridge Philosophical Society 38, pp. 313–322.
Cited by: Figure 2.2,
§2.1,
§3.5.
-
[52]
M. Ueno, M. Yoshida, A. Onodora, O. Shimomura, and K. Takemura (1999)
Stability of the wurtzite-type structure under high pressure: GaN and InN.
Phys. Rev. B 49, pp. 14.
Cited by: §5.1.1.3.
-
[53]
R. Vargas and D. Louër (1983)
Diffraction Line Profiles and Scherrer Constants for Materials with Hexagonal Crystallites.
Journal of Applied Crystallography 16, pp. 512–518.
Cited by: §3.5.
-
[54]
B. E. Warren and B. L. Averbach (1950)
J. Appl. Phys. 21, pp. 595.
Cited by: §2.3.3,
§3.5.9.1.
-
[55]
B. E. Warren (1969)
X-Ray Diffraction.
Addison-Wesley, Reading, Massachusetts.
Cited by: §3.4,
§3.5.9.1,
§3.5.9.2.
-
[56]
A. J. C. Wilson (1949)
X-ray Optics (The Diffraction of X-rays by Finite and Imperfect Crystals).
Methuen’s Monographs on Physical Subjects, Methuen, London.
Cited by: §3.5.
-
[57]
A. J. C. Wilson (1962)
X-ray Optics.
wydanie drugie edition, Methuen, London.
Cited by: §3.5.
-
[58]
W. H. Zachariasen (1945)
Theory of X-Ray Diffraction in crystals.
John Wiley & Sons, New York.
Cited by: §3.4,
Chapter 3,
Chapter 3.
-
[59]
R. Zallen (1994)
Fizyka ciał amorficznych.
PWN, Warszawa.
Cited by: §4.1.2.