Roman Pielaszek - Nanodyfrakcja rentgenowska

Bibliography

  • [1] H. D. Bale and P. W. Schmidt (1984) Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties. Phys. Rev. Lett. 53, pp. 596. Cited by: §3.5.7.
  • [2] H. Baumhauer (1912) Z.Krist. 50, pp. 33. Cited by: §5.1.2.
  • [3] E. F. Bertaut (1950) Raies de Debye-Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines. Acta Cryst. 3, pp. 14. Cited by: §3.5.
  • [4] I. N. Bronsztejn and K. A. Siemiendiajew (1997) Matematyka - Poradnik encyklopedyczny. PWN, Warszawa. Cited by: §4.1.3.2.
  • [5] T. L. Daulton, R. S. Lewis, and S. Amari (1998) Polytype Variations in Presolar SiC Grains: Microstructural Characterization by Transmission Electron Microscopy. Meteoritics & Planetary Science 33, pp. 4. Note: Supplement, A37-A38 Cited by: §5.1.1.1.
  • [6] P. Debye (1915) Zerstreuung von Röntgenstrahlen. Ann.Phys. 46, pp. 809. Cited by: §3.2, §3.3, §3.5, §4.2.
  • [7] J. Enderlein (1997) A package for displaying crystal morphology.. The Matematica Journal 7, pp. 72. Cited by: Figure 3.10.
  • [8] S. Gierlotka, B. F. Pałosz, R. Pielaszek, S. Stel’makh, and S. Doyle (1998) Simultaneous analysis of the small- and wide-angle scattering from nanometric SiC based on the ab initio pattern simulation. Materials Science Forum 278-281, pp. 106–109. Cited by: §5.4.3.2.
  • [9] S. Gierlotka, R. Pielaszek, B. F. Pałosz, E. Grzanka, H. Ehrenberg, and M. Knapp (2000) Thermal expansion of diamond-SiC nanocomposites. HASYLAB Annual Reports 2000. Cited by: §5.4.3.2.
  • [10] J. Gronkowski (1995/96) Elementy teorii dynamicznej dyfrakcji promieni X. Warszawa. Note: Materiały dla studentów (skrypt) Cited by: Chapter 3.
  • [11] E. Grzanka, B. F. Pałosz, S. Gierlotka, R. Pielaszek, K. Akimow, U. Bismayer, and J. F. Janik (2000) Dislocation induced polytype transformation of GaN nanocrystals under extreme pressures. HASYLAB Annual Reports 2000. Cited by: §5.5.1.
  • [12] E. Grzanka, B. F. Pałosz, S. Gierlotka, R. Pielaszek, K. Akimow, U. Bismayer, and J. F. Janik (2000) Distribution of strain in GaN and SiC nanocrystals under extreme pressures. HASYLAB Annual Reports 2000. Cited by: §5.5.1.
  • [13] A. Guinier and G. Fournet (1955) Small-Angle Scattering of X-Rays. John Wiley & Sons, New York. Cited by: §3.5, §5.4.1.1.
  • [14] A. I. Gusev (1998) Effects of the nanocrystalline state in solids. Physics-Uspekhi 41, pp. 49–76. Cited by: §5.1.3.1.
  • [15] H. Jagodzinski (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Roentgenintensitaeten. Acta Cryst. 2, pp. 201. Cited by: §5.1.2.1.
  • [16] H. Jagodzinski (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. II. Berechnung der fehlgeordneten dichtesten Kugelpackungen mit Wechselwirkungen der Reichweite 3. Acta Cryst. 2, pp. 208. Cited by: §5.1.2.1.
  • [17] H. Jagodzinski (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Roentgeninterferenzen. III. Vergleich der Berechnungen mit experimentellen Ergebnissen. Acta Cryst. 2, pp. 298. Cited by: §5.1.2.1.
  • [18] J. F. Janik and J. R. Wells (1996) Gallium imide, (ga(nh)3/2)n, a new polymeric precursor for gallium nitride powders. Chem. Mater. 8, pp. 2708–2711. Cited by: §5.1.1.3, §5.5.2.
  • [19] J. A. Jegier, S. McKernam, A. P. Purdy, and W. L. Gladfelter (2000) Ammonothermal Conversion of Cyclotrigallazane to GaN: Synthesis of Nanocrystalline and Cubic GaN from [H2GaNH2]3. Chem.Mater. 12, pp. 1003–1010. Cited by: §5.1.1.3.
  • [20] D. G. Keil, H. F. Calcote, and R. J. Gill (1996) Flame synthesis of high purity, nanosized crystalline silicon carbide powder. In MRS Symp.Proc, Vol. 410, pp. 167–172. Cited by: §5.1.1.1, 2nd item.
  • [21] J. F. Kelly, P. Barnes, and G. R. Fisher (1995) The use of synchrotron edge topography to study polytype nearest neighbour relationships in SiC. Radiat. Phys. Chem. 45, pp. 509–522. Cited by: §5.1.2.2.
  • [22] C. Kittel (1970) Wstęp do fizyki ciała stałego. wydanie drugie edition, PWN, Warszawa. Cited by: §5.5.3, §5.5.3.
  • [23] H. P. Klug and L. E. Alexander (1954) X-Ray Diffraction Procedures. John Wiley & Sons, New York. Cited by: §3.5.9.1, §3.5.9.2, §3.5.9.2, §4.2.
  • [24] C. E. Krill and R. Birringer (1998) Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philosophical Magazine A 77 (3), pp. 621–640. Cited by: §3.5.9.2.
  • [25] D. Kurtenbach, H. -. P. Martin, and E. Müller (1997) Zeitschrift für Kristallographie 12, pp. 47. Note: Suppl. Cited by: §5.1.1.1, 1st item.
  • [26] J. I. Langford and D. Louër (1982) Diffraction Line Profiles and Scherrer Constants for Materials with Cylindrical Crystallites. Journal of Applied Crystallography 15, pp. 20–26. Cited by: §3.5.
  • [27] J. I. Langford (2000) Crystallite Size from Diffraction Data. International Union of Crystallography Newsletter 24, pp. 11–14. Cited by: §3.5.9.2.
  • [28] M. Lefeld-Sosnowska (1987) Zjawiska interferencji rentgenowskich pól falowych w doskonałych i zdeformowanych monokryształach krzemu. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. Cited by: Chapter 3.
  • [29] E. Limpert, W. A. Stahel, and M. Abbt (2001) Log-normal Distributions across the Science: Keys and Clues. Bioscience 5 (51), pp. 341–352. Cited by: §4.1.4.
  • [30] R. E. Maeder (Fall 1993) Uniform polyhedra. The Matematica Journal 3, pp. Issue 4. Cited by: Figure 3.10.
  • [31] E. W. Montroll and M. F. Shlesinger (1984) Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics. SSM, Vol. XI, North Holland, Amsterdam. Cited by: footnote 3.
  • [32] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin (2001) Matching 3D Models with Shape Distributions. In ShapeModeling International 2001, External Links: Link Cited by: Figure 4.4, §4.1.3.2, §4.1.3.
  • [33] B. Palosz, E. Grzanka, S. Gierlotka, S. Stel’makh, R. Pielaszek, U. Bismayer, J. Neuefeind, H.-P. Weber, Th. Proffen, R. V. Dreele, and W. Palosz (2002) Analysis of short and long range atomic order in nanocrystalline diamonds with application of powder diffractometry. Zeitschrift für Kristallographie 217, pp. 1–12. Cited by: §4.1.1.2.
  • [34] B. F. Pałosz, E. A. Ekimov, S. Gierlotka, S. Stel’makh, R. Pielaszek, A. Witek, E. Grzanka, A. Presz, H. Boysen, and U. Bismayer (1998) Preparation of SiC-diamond composites. HASYLAB Annual Reports I, pp. 587. Cited by: §5.4.3.2.
  • [35] B. F. Pałosz, S. Gierlotka, R. Pielaszek, E. Grzanka, P. Biczyk, A. Grzegorczyk, E. A. Ekimov, and U. Bismayer (2000) Nanokompozyty diamentu i SiC z Al otrzymane metodą strefowego nasycania nanokryształów fazą ciekłą pod wysokim ciśnieniem. Działalność Naukowa PAN 9, pp. 88. Cited by: §5.4.3.2.
  • [36] B. F. Pałosz, S. Gierlotka, S. Stel’makh, A. Witek, R. Pielaszek, E. Grzanka, E. A. Ekimov, A. Gavriluk, U. Bismayer, and S. Werner (1999) In-situ diffraction studies of nanocrystalline materials under high pressures. In Proceedings of 5th National Symposium of Synchrotron Radiation Users, Warsaw, pp. 125–147. Cited by: §5.4.3.2.
  • [37] B. F. Pałosz, S. Stel’makh, S. Gierlotka, M. Aloszyna, R. Pielaszek, P. Zinn, T. Peun, U. Bismayer, and D. G. Keil (1998) Evolution of disordering in SiC under high pressure high temperature conditions: in-situ powder diffraction study. Materials Science Forum 278-281, pp. 612–617. Cited by: §5.5.1.
  • [38] B. F. Pałosz, S. Stel’makh, S. Gierlotka, E. A. Ekimov, R. Pielaszek, V. Filonenko, V. Gryaznov, and A. Gavriluk (1998) Sintering of compacts from nanocrystalline diamonds without sintering agent. Material Research Society Symp. Proceedings 499, pp. 115–120. Cited by: §5.4.3.2.
  • [39] R. Pielaszek, M. Aloszyna, B. F. Pałosz, S. Gierlotka, and S. Stel’makh (1998) Modelling of strain distribution in non-hydrostatically pressed nanocrystalline SiC, in-situ diffraction study. Material Research Society Symp. Proceedings 501, pp. 305–310. Cited by: §5.5.1.
  • [40] R. Pielaszek, M. Avdeev, E. Grzanka, B. F. Pałosz, S. Gierlotka, and S. Stel’makh (1999) Change of microstructure of nanocrystalline SiC and diamond powders in high-pressure high-temperature conditions. Budapest Neutron Research Center KFKI Annual Reports 1999. Cited by: §5.4.3.2.
  • [41] R. Pielaszek, S. Gierlotka, E. Grzanka, S. Stel’makh, and B. F. Pałosz (2002) Influence of High Pressure on the Polytype Structure of Nanocrystalline GaN. Diffusion and Defect Forum 208-209, pp. 189–196. Cited by: §5.5.1.
  • [42] R. Pielaszek, S. Gierlotka, E. Grzanka, S. Stel’makh, and B. F. Pałosz (2002) X-ray characterization of nanostructured materials. Diffusion and Defect Forum 208-209, pp. 267–282. Cited by: §5.2.
  • [43] R. Pielaszek, B. F. Pałosz, S. Gierlotka, S. Stel’makh, and U. Bismayer (1999) A model of strain distribution in nanocrystalline SiC and diamond at very high pressures, in-situ x-ray diffraction study and computer modeling. Material Research Society Symp. Proceedings 538, pp. 561–566. Cited by: §5.5.1.
  • [44] R. Pielaszek, B. F. Pałosz, S. Gierlotka, S. Stel’makh, E. Grzanka, and G. Goerigk (1999) Change of microstructure of nanocrystalline SiC powder in high-pressure. HASYLAB Annual Reports 1999. Cited by: §5.4.3.2.
  • [45] R. Pielaszek, S. Stel’makh, S. Gierlotka, B. F. Pałosz, D. Kurtenbach, and U. Bismayer (1999) Evolution of microstructure of nanocrystalline SiC under high pressure. Materials Science Forum 321-324, pp. 346–351. Cited by: §5.4.3.2.
  • [46] A. P. Purdy (1999) Ammonothermal Synthesis of Cubic Gallium Nitride. Chem.Mater. 11, pp. 1648–1651. Cited by: §5.1.1.3.
  • [47] D. Rutkowska, M. Piliński, and L. Rutkowski (1997) Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. PWN, Warszawa-ŁódĽ. Cited by: §5.2.1.1.
  • [48] D. W. Schaefer and K. D. Keefer (1986) Structure of Random Porous Materials: Silica Aerogel. Phys. Rev. Lett. 56, pp. 2199–2202. Cited by: item 3.
  • [49] P. T. B. Shaffer (1969) A Review of the Structure of Silicone Carbide. Acta Cryst. B 25, pp. 477. Cited by: §5.1.1.1.
  • [50] S. Stelmakh (1997) Diffraction Studies and Modelling of Polytype Phase Transformation in Polycrystalline Silicon Carbide. Ph.D. Thesis, University of Warsaw, Department of Physics. Cited by: Figure 5.1, §5.2.3, §5.2.
  • [51] A. R. Stokes and A. J. C. Wilson (1942) A method of calculating the integral breadths of Debye-Scherrer lines. Proceedings of the Cambridge Philosophical Society 38, pp. 313–322. Cited by: Figure 2.2, §2.1, §3.5.
  • [52] M. Ueno, M. Yoshida, A. Onodora, O. Shimomura, and K. Takemura (1999) Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys. Rev. B 49, pp. 14. Cited by: §5.1.1.3.
  • [53] R. Vargas and D. Louër (1983) Diffraction Line Profiles and Scherrer Constants for Materials with Hexagonal Crystallites. Journal of Applied Crystallography 16, pp. 512–518. Cited by: §3.5.
  • [54] B. E. Warren and B. L. Averbach (1950) J. Appl. Phys. 21, pp. 595. Cited by: §2.3.3, §3.5.9.1.
  • [55] B. E. Warren (1969) X-Ray Diffraction. Addison-Wesley, Reading, Massachusetts. Cited by: §3.4, §3.5.9.1, §3.5.9.2.
  • [56] A. J. C. Wilson (1949) X-ray Optics (The Diffraction of X-rays by Finite and Imperfect Crystals). Methuen’s Monographs on Physical Subjects, Methuen, London. Cited by: §3.5.
  • [57] A. J. C. Wilson (1962) X-ray Optics. wydanie drugie edition, Methuen, London. Cited by: §3.5.
  • [58] W. H. Zachariasen (1945) Theory of X-Ray Diffraction in crystals. John Wiley & Sons, New York. Cited by: §3.4, Chapter 3, Chapter 3.
  • [59] R. Zallen (1994) Fizyka ciał amorficznych. PWN, Warszawa. Cited by: §4.1.2.